879 research outputs found

    Material processing using ultrashort light pulses with tilted front

    No full text
    Femtosecond laser writing in glass is controlled by the polarization plane azimuth and intensity front tilt of light pulse. Polarization dependent distribution of extraordinary modifications along the light propagation direction is observed

    Revealing extraordinary properties of femtosecond laser writing in glass

    No full text
    Modification of transparent materials with ultrafast lasers has attracted considerable interest due to a wide range of applications including laser surgery, integrated optics, optical data storage, 3D micro- and nano-structuring [1].Three different types of material modifications can be induced with ultrafast laser irradiation in the bulk of a transparent material, silica glass in particular: an isotropic refractive index change (type 1); a form birefringence associated with self-assembled nanogratings and negative refractive index change (type 2) [2,3]; and a void (type 3). In fused silica the transition from type 1 to type 2 and finally to type 3 modification is observed with an increase of fluence. Recently, a remarkable phenomenon in ultrafast laser processing of transparent materials has been reported manifesting itself as a change in material modification by reversing the writing direction [4]. The phenomenon has been interpreted in terms of anisotropic plasma heating by a tilted front of the ultrashort laser pulse. Moreover a change in structural modification has been demonstrated in glass by controlling the direction of pulse front tilt, achieving a calligraphic style of laser writing which is similar in appearance to that inked with the bygone quill pen [5]. It has also been a common belief that in a homogeneous medium, the photosensitivity and corresponding light-induced material modifications do not change on the reversal of light propagation direction. More recently it have observed that in a noncentrosymmetric medium, modification of the material can be different when light propagates in opposite directions (KaYaSo effect) [6]. Non-reciprocity is produced by magnetic field (Faraday effect) and movement of the medium with respect to the direction of light propagation: parallel (Sagnac effect) or perpendicular (KaYaSo effect). Moreover a new phenomenon of ultrafast light blade, representing itself the first evidence of anisotropic sensitivity of isotropic medium to femtosecond laser radiation has been recently discovered [7]. We attribute these new phenomena to the anisotropy of the light-matter interaction caused by space-time couplings in ultrashort light pulses. This intrinsic spatio-temporal asymmetry of light opens an interesting opportunity in the control of photon flux interacting with a target submerged into condensed isotropic medium. We anticipate that the observed phenomena will open new opportunities in laser material processing, laser surgery, optical manipulation and data storage

    Recent advances in femtosecond laser writing inside transparent materials

    No full text
    Modification of transparent materials with ultrafast lasers has attracted considerable interest due to a wide range of applications including laser surgery, integrated optics, optical data storage, 3D microand nano-structuring [1].T Three different types of material modifications can be induced with ultrafast laser irradiation in the bulk of a transparent material, silica glass in particular: an isotropic refractive index change (type 1); a form birefringence associated with self-assembled nanogratings and negative refractive index change (type 2) [2,3]; and a void (type 3). In fused silica the transition from type 1 to type 2 and finally to type 3 modification is observed with an increase of fluence. Recently, a remarkable phenomenon in ultrafast laser processing of transparent materials has been reported manifesting itself as a change in material modification by reversing the writing direction [4]. The phenomenon has been interpreted in terms of anisotropic plasma heating by a tilted front of the ultrashort laser pulse. Moreover a change in structural modification has been demonstrated in glass by controlling the direction of pulse front tilt, achieving a calligraphic style of laser writing which is similar in appearance to that inked with the bygone quill pen [5]. It has also been a common belief that in a homogeneous medium, the photosensitivity and corresponding light-induced material modifications do not change on the reversal of light propagation direction. More recently it have observed that in a non-centrosymmetric medium, modification of the material can be different when light propagates in opposite directions (KaYaSo effect) [6]. Moreover a new phenomenon of ultrafast light blade, representing itself the first evidence of anisotropic sensitivity of isotropic medium to femtosecond laser radiation has been recently discovered [7]. We attribute these new phenomena to the anisotropy of the light-matter interaction caused by space-time couplings in ultrashort light pulses. We anticipate that the observed phenomena will open new opportunities in laser material processing, laser surgery, optical manipulation and data storage

    Tumour-amplified kinase BTAK is amplified and overexpressed in gastric cancers with possible involvement in aneuploid formation

    Get PDF
    Our recent analysis of gastric cancers using comparative genomic hybridization (CGH) revealed a novel high frequent copy number increase in the long arm of chromosome 20. Tumour-amplified kinase BTAK was recently cloned from breast cancers and mapped on 20q13 as a target gene for this amplification in human breast cancers. In the study presented here, we analysed BTAK copy-number and expression, and their relation to the ploidy pattern in 72 primary gastric cancers. Furthermore, wild-type BTAK and its deletion mutants were transfected to gastric cancers to examine changes in cell proliferation and DNA ploidy pattern. Evaluation of 72 unselected primary gastric cancers found BTAK amplification in 5% and overexpression in more than 50%. All four clinical samples with BTAK amplification showed aneuploidy and poor prognosis. Transfection of BTAK in near-diploid gastric cancers induced another aneuploid cell population. In contrast, the c-terminal-deleted mutant of BTAK induced no effect in DNA ploidy pattern and inhibited gastric cancer cell proliferation. These results suggest that BTAK may be involved in gastric cancer cell aneuploid formation, and is a candidate gene for the increase in the number of copies of the 20q, and thus may contribute to an increase in the malignant phenotype of gastric cancer. © 2001 Cancer Research Campaign http://www.bjcancer.co

    Editorial: The Mammary Stroma in Normal Development and Function

    Get PDF
    The mammary gland can no longer be simply viewed as an organ composed of epithelial cells within a passive stromal microenvironment. Many lines of evidence have evolved to reinforce the notion that mammary epithelial cell growth, differentiation, lactation and progression to cancer involves bidirectional interactions between the epithelial population and its surrounding stroma. Within this stroma are numerous systems that are all capable of modulating epithelial function. In this context, the mammary stroma is not simply a depot of adipose tissue in which mammary epithelial cells undertake a unique growth and differentiation process, although adipocytes can impart numerous modulatory signals to epithelial cells, and vice versa. Rather, the stromal environment constitutes and supports a critical vasculature that supplies nutrients and endocrine cues, a lymphatic system that not only removes metabolites but also provides an intimate interface with the immune system, and an extracellular matrix scaffold in which epithelial cells grow, differentiate and regress. Ultimately all of these components play a critical role in directing the epithelial phenotype during normal mammary gland growth and function. An increasing appreciation for these different systems demands a view of mammary epithelial cells in a much different light, and further necessitates the development of model systems that incorporate and integrate increasing complexity

    What is a fish? The life and legend of David L.G. Noakes

    Get PDF
    David Lloyd George Noakes (1942–2020) is best known for his insatiable curiosity, his quick wit and dry sense of humor, his scientific contributions to the field of animal behaviour, and his ability to form and maintain long-lasting connections. His research interests were vast but remained grounded in early life history, behaviour, social behaviour, the evolution of behaviour, behavioural genetics, and evolutionary ecology. David had a remarkable ability to establish and maintain strong connections within the international academic community. David was also internationally recognized for his numerous contributions as a scientific editor, promoting accessibility to the international community that he served. We memorialize David’s legacy in this tribute article, ensuring that his accomplishments and the momentous impact he had on the scientific community are not soon forgotten
    • …
    corecore